Bio&Biotech
>
Mechanismus zum programmierten Zelltod in Bakterien
Mechanismus zum programmierten Zelltod in BakterienBakterien vergiften sich von innen herausToxin-Antitoxin-Systeme (TA-Systeme) sind weit verbreitete Genelemente, die Bakterien von innen heraus töten können. Abhängig von ihrer Aktivierung haben TA-Systeme im Verlauf der bakteriellen Evolution unterschiedlichste Aufgaben übernommen. Epsilon/Zeta-Systeme bilden eine TA-Familie, die besonders in humanpathogenen Bakterien verbreitet ist. Dort stabilisieren sie zum einen wichtige Resistenzgene. Zum anderen beteiligen sie sich direkt an der Virulenz mancher Pathogene. Die Aufklärung des Mechanismus, mit dem diese Epsilon/Zeta-Systeme Zellen töten, vermag beide Phänomene nun elegant zu erklären. Programmierter Zelltod in Bakterien
Der Begriff „programmierter Zelltod“ (PCD für programmed cell death) beschreibt jede Form von Zelluntergang, der durch einen genetisch definierten, energieabhängigen zellulären Mechanismus ausgelöst wird. In Form von Apoptose übernimmt PCD in mehrzelligen Organismen eine Vielzahl an überlebenswichtigen Funktionen. Zum Beispiel werden so überschüssige Zellen während der Embryonalentwicklung entfernt oder der Organismus durch das Abtöten mutierter oder infizierter Zellen geschützt. Funktioniert dieser altruistische Selbstmord von Zellen beispielsweise in menschlichen Zellen nicht mehr ordnungsgemäß, kann dies zu Krebs, Autoimmunerkrankungen oder chronischen Infektionskrankheiten führen. Doch während PCD in multizellulären Organismen intuitiv logisch erscheint, mutet das Auftreten vom programmierten Zelltod in einzelligen Lebewesen paradox an – warum sollte eine einzelne, autark lebensfähige Zelle sich selbst töten? Trotz dieses scheinbaren Widerspruchs ist PCD jedoch auch bei Bakterien ein weit verbreitetes, für das Überleben einer Gesamtpopulation oft wichtiges Phänomen [1]. Auf einer molekularen Ebene wird in Bakterien PCD meist durch so genannte Toxin-Antitoxin-Systeme ausgelöst. TA-Systeme sind kleine Genelemente, die sich im Laufe der Evolution mithilfe mobiler genetischer Elemente (MGE) in fast allen Bakterien verbreitet haben [2]. Typische MGE, die TA-Systeme beinhalten, sind beispielsweise konjugierende Plasmide, die oft auch über Artgrenzen hinweg zwischen Bakterien ausgetauscht werden können. Meist profitieren Bakterien von solchen Plasmiden, da sie überlebenswichtige Gene für Antibiotikaresistenzen oder zusätzliche Stoffwechselwege mit sich bringen. Um ihren Wirt energetisch nicht unnötig zu belasten, gibt Plasmide, die nur in geringer Anzahl in bakteriellen Zellen vorliegen, laufen Gefahr, während der Zellteilung nur in eine der Tochterzellen vererbt zu werden (A) Trägt ein Plasmid hingegen ein Toxin-Antitoxin-System, werden die plasmidfreien Zellen abgetötet und das Plasmid in der bakteriellen Population bleibt erhalten (B). TA-Systeme bestehen meist aus einem bicistronischen Operon, das für ein toxisches Protein (rot) und sein entsprechendes Antitoxin (blau) kodiert. In Abwesenheit des Antitoxins wird das Toxin durch Bindung durch das Antitoxin inaktiviert. Gleichzeitig unterdrücken das Antitoxin und der Toxin/Antitoxin-Komplex die Transkription des Operons. Da der Antitoxinpool aber kontinuierlich dem Abbau durch zelleigene Enzyme unterworfen ist, ist die Zelle auf die ständige Neusynthese des Gegengiftes angewiesen. Verliert die Zelle nun die Fähigkeit zur Neusynthese, beispielweise durch Verlust des TA-Operons, werden der zytosolische Toxinpool aktiviert und die bakterielle Zelle abgetötet. Epsilon/Zeta-Systeme
Die von uns erforschte Familie der Epsilon/Zeta-TA-Systeme ist besonders in pathogenen Bakterien weit verbreitet. Epsilon/Zeta-Systeme stabilisieren beispielsweise in humanpathogenen Enterokokken Plasmide, die das Vancomycin-Resistenz-Gen vanA tragen [5,6]. Da Vancomycin eines der letzten Reserveantibiotika ist, sind Infektionen mit vancomycinresistenten Enterokokken (VRE) nur noch schwer zu behandeln und führen gerade bei immunsupprimierten Patientenhäufig zum Tod [7]. Plasmid-stabilisierende Epsilon/Zeta-Systeme funktionieren hierbei wie andere TA-Systeme: Bei Verlust des Plasmids wird das Antitoxin (Epsilon) abgebaut und die damit verbundene Inhibierung des Toxins (Zeta) aufgehoben. Neben den plasmidischen Systemen gibt es in vielen Bakterien auch chromsomal vererbte Epsilon/Zeta-Systeme. So findet man beispielsweise in den Chromsomen verschiedener hoch virulenter Stämme von Streptococcus Vergiftung von innen Um den bakteriotoxischen Mechanismus der Zeta-Toxin-Familie aufzuklären, erzeugten wir eine abgeschwächte Variante des pneumokokkalen Zeta-Toxins PezT und studierten ihren Expressionsphänotyp im Modellorganismus E. coli [10]. Dabei zeigte sich, dass die Expression der PezTVariante in freischwimmenden E. coli-Zellen dazu führt, dass die meisten Zellen sich nicht mehr vollständig teilen können und stattdessen an ihrer Teilungsnahtstelle, dem so genannten „Septum“, aufplatzten. Dies und weitere phänotypische Merkmale wie das Fehlen einer intakten Zellwand in adhärent wachsenden Zellen deuteten darauf hin, dass die Aktivität von PezT mit der bakteriellen Zellwandsynthese interferiert. Da Zeta-Toxine auch in eukaroytischen Zellen wie beispielsweise Hefe zytotoxisch sind [11], vermuteten wir, dass das Ziel molekül der Toxine auch in höheren Organismen vertreten sein muss. Eines der hauptverdächtigen Moleküle, die als Substrat für PezT infrage kamen, war dabei der Nukleotidzucker UNAG (UDP-N-Acetylglucosamin): UNAG ist einerseits der essenzielle Baustein für das Peptidolykan (auch Murein genannt), den Hauptbestandteil der bakteriellen Zellwand, gleichzeitig aber auch von großer Bedeutung im Stoffwechsel eukaryotischer Zellen. In der Tat konnten wir in vitro und in vivo nachweisen, dass UNAG das bisher unbekannte Zielmolekül von plasmidkodierten Zeta-Toxinen als auch PezT ist. Verschiedene Methoden wie NMR, Electrospray-Ionisation und Röntgenstrukturanalyse offenbarten, dass Zeta-Toxine neuartige Kinasen sind, die unter Verwendung von Adenosintriphosphat UNAG spezifisch an der 3\'-Hydroxylgruppe des N-Acetylglucosaminrests phosphorylieren [10]. Dies führt zur Entstehung des abnormalen Nukleotidzuckers UNAG- 3P, der nicht mehr nur für die Peptidoglykansynthese unbrauchbar ist, sondern zugleich noch deren ersten enzymatischen Schritt inhibiert. Letztendlich vergiften Zeta-Toxine also die Bakterien von innen heraus, indem sie einen essenziellen Metaboliten in ein toxisches Molekül verwandeln. Da die Peptidoglykansynthese hochkonserviert ist, erklärt der Wirkungsmechanismus von Zeta-Toxinen auch sofort, wie Epsilon/Zeta-Systeme Resistenzplasmide in verschiedenen Bakterienarten stabilisieren. Doch die Aufklärung der Wirkungsweise von PezT liefert desgleichen einen schlüssigen Erklärungsansatz, wie das Toxin die Virulenz von S. pneumoniae erhöht: Pneumokokkale Zellen haben die sonderbare Eigenschaft, unter Stressbedingungen sich selbst oder gegenseitig zum Lysieren zu bringen [12,13]. Dieses Phänomen erlaubt einerseits den Austausch von genetischem Material innerhalb der Pneumokokken, fördert aber zusätzlich die Freisetzung pneumokokkaler Virulenzfaktoren. Gerade das Endotoxin Pneumolysin schädigt den infizierten Organismus in verschiedenster Weise und trägt damit in großem Maße zu Virulenz von Pneumokokken bei [14]. Da Pneumolysin generell nur durch Lyse von Pneumokokken freigesetzt werden kann, liegt es nahe, dass die verstärkte Virulenz von PezAT-positiven S. pneumoniae-Stämmen direkt mit der Autolyse einer bakteriellen Subpopulation durch eine spezifische Aktivierung von PezT zusammenhängt. Fazit Die Aufklärung der Wirkungsweise von Zeta-Toxinen liefert einen wichtigen Mosaikstein für die Rolle von TA-Systemen in pathogenen Bakterien und wirft eine Vielzahl neuer und interessanter Fragestellungen auf. Kann beispielsweise der neuartige Naturstoff UNAG-3P als Grundsubstanz für neue Antibiotika verwendet werden? Kann man Zeta-Toxine künstlich aktivieren und so multiresistente Keime gezielt bekämpfen? Durch welchen Mechanismus wird das chromosomale PezAT-System während pneumokokkaler Infektionen aktiviert und führt dies tatsächlich zu einer verstärkten Freisetzung von Pneumolysin? Die Forschung zu TA-Systemen wie PezAT bleibt daher weiterhin spannend und herausfordernd.
Literatur |
L&M 4 / 2011Das komplette Heft zum kostenlosen Download finden Sie hier: zum Download Die Autoren:Weitere Artikel online lesenNewsSchnell und einfach die passende Trennsäule findenMit dem HPLC-Säulenkonfigurator unter www.analytics-shop.com können Sie stets die passende Säule für jedes Trennproblem finden. Dank innovativer Filtermöglichkeiten können Sie in Sekundenschnelle nach gewünschtem Durchmesser, Länge, Porengröße, Säulenbezeichnung u.v.m. selektieren. So erhalten Sie aus über 70.000 verschiedenen HPLC-Säulen das passende Ergebnis für Ihre Anwendung und können zwischen allen gängigen Herstellern wie Agilent, Waters, ThermoScientific, Merck, Sigma-Aldrich, Chiral, Macherey-Nagel u.v.a. wählen. Ergänzend stehen Ihnen die HPLC-Experten von Altmann Analytik beratend zur Seite – testen Sie jetzt den kostenlosen HPLC-Säulenkonfigurator!© Text und Bild: Altmann Analytik ZEISS stellt neue Stereomikroskope vorAufnahme, Dokumentation und Teilen von Ergebnissen mit ZEISS Stemi 305 und ZEISS Stemi 508ZEISS stellt zwei neue kompakte Greenough-Stereomikroskope für Ausbildung, Laborroutine und industrielle Inspektion vor: ZEISS Stemi 305 und ZEISS Stemi 508. Anwender sehen ihre Proben farbig, dreidimensional, kontrastreich sowie frei von Verzerrungen oder Farbsäumen. © Text und Bild: Carl Zeiss Microscopy GmbH |